Mutational analysis of terminal deoxynucleotidyltransferase-mediated N-nucleotide addition in V(D)J recombination.
نویسندگان
چکیده
The addition of nontemplated (N) nucleotides to coding ends in V(D)J recombination is the result of the action of a unique DNA polymerase, TdT. Although N-nucleotide addition by TdT plays a critical role in the generation of a diverse repertoire of Ag receptor genes, the mechanism by which TdT acts remains unclear. We conducted a structure-function analysis of the murine TdT protein to determine the roles of individual structural motifs that have been implicated in protein-protein and protein-DNA interactions important for TdT function in vivo. This analysis demonstrates that the N-terminal portion of TdT, including the BRCA-1 C-terminal (BRCT) domain, is not required for TdT activity, although the BRCT domain clearly contributes quantitatively to N-nucleotide addition activity. The second helix-hairpin-helix domain of TdT, but not the first, is required for activity. Deletional analysis also suggested that the entire C-terminal region of TdT is necessary for N-nucleotide addition in vivo. The long isoform of TdT was found to reduce N-nucleotide addition by the short form of TdT, but did not increase nucleotide deletion from coding ends in either human or rodent nonlymphoid cells. We consider these results in light of the recently reported structure of the catalytic region of TdT.
منابع مشابه
Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints.
The coding regions of antigen receptor genes assembled by variable-diversity-joining region [V(D)J] recombination are known in many cases to have undergone deletions of several nucleotides and also to contain insertions of noncoded nucleotides at the recombined junction (the coding joint). By using extrachromosomal recombination substrates to transfect lymphoid cell lines, we show that the sign...
متن کاملEvidence that the long murine terminal deoxynucleotidyltransferase isoform plays no role in the control of V(D)J junctional diversity.
Two TdT isoforms have been found in the mouse. The short isoform is known to add N regions to gene segment junctions during V(D)J recombination, but the role of the long (TdTL) isoform is controversial. We have shown that TdTL, although endowed with terminal transferase activity, is thermally unstable and unable to add N regions in vivo. In this study, we demonstrate that TdTL is devoid of 3'-5...
متن کاملModulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase.
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86-/- animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). T...
متن کاملNonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo.
DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient anima...
متن کاملUbiquitylation of Terminal Deoxynucleotidyltransferase Inhibits Its Activity
Terminal deoxynucleotidyltransferase (TdT), which template-independently synthesizes DNA during V(D)J recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 172 9 شماره
صفحات -
تاریخ انتشار 2004